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Abstract:
Introduction: Urinary tract  infections (UTIs)  are among the most  common bacterial  infections in children,  with
recurrent episodes posing risks for renal scarring and long-term kidney damage. This study aimed to evaluate the
utility of artificial intelligence (AI)-based models in predicting pediatric UTI recurrence, especially in low-resource
settings.

Methods: A retrospective cohort study of 211 pediatric UTI cases was conducted between 2010 and 2025 at a single
center in Iraq. Data included demographics, laboratory and imaging findings, and clinical outcomes. Four predictive
models were developed: Logistic Regression, Random Forest, XGBoost, and Deep Learning. Models' performance was
assessed using ROC-AUC, for accuracy, sensitivity, and specificity. SHapley Additive Explanations (SHAP) were used
for interpretability.

Results: The Deep Learning model achieved the highest performance (AUC-ROC: 0.94, accuracy: 90.2%), followed by
XGBoost (AUC-ROC: 0.92), and Random Forest (AUC-ROC: 0.89). Logistic Regression performed the lowest (AUC-
ROC: 0.78).  SHAP analysis identified vesicoureteral reflux (VUR) grade ≥3, renal scarring, female sex, and rural
residence as the most influential predictors of recurrence.

Discussion: This study confirms that AI models significantly outperform traditional statistical methods in predicting
recurrent  pediatric  UTIs.  Key  risk  factors  identified  through  SHAP  align  with  established  clinical  knowledge,
supporting the validity of AI predictions. The study also highlights healthcare disparities, particularly the elevated
risk in rural populations. Limitations include its single-center design and lack of external validation.

Conclusion: AI-based predictive models, especially Deep Learning and XGBoost, offer high accuracy and clinical
relevance for early risk stratification in pediatric UTIs. Their integration into digital health systems could enhance
personalized care and reduce recurrence-related complications.
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1. INTRODUCTION
Urinary  tract  infections  (UTIs)  are  among  the  most

prevalent bacterial infections in the pediatric population,
affecting approximately 8% of girls and 2% of boys by the
age of  seven.  These infections pose a  significant  clinical
concern  due  to  their  potential  to  recur,  leading  to  long-
term complications such as renal scarring, hypertension,
and  chronic  kidney  disease  (CKD).  Recurrent  UTIs,
defined as two or more episodes in six months or three or
more within a year, disproportionately affect children with
underlying anatomical abnormalities, vesicoureteral reflux
(VUR),  or  dysfunctional  voiding  patterns  [1].  Identifying
at-risk  patients  early  is  crucial  for  prompt  interventions
and better long-term renal health outcomes.

Despite  advances  in  diagnostic  and  therapeutic  stra-
tegies,  predicting  which  pediatric  patients  will  develop
recurrent UTIs is still a clinical challenge. Traditional risk
assessment  methods  primarily  rely  on  a  combination  of
patient  history,  clinical  symptoms,  urine  culture  results,
and imaging modalities such as renal ultrasound, voiding
cystourethrography  (VCUG),  and  99mTc-dimercapto-
succinic  acid  (DMSA)  renal  scans  [2].  While  these  app-
roaches offer valuable insights, they often do not capture
the  full  spectrum  of  risk  factors  contributing  to  recur-
rence.  Moreover,  their  predictive  accuracy  is  limited  by
interobserver variability, delayed diagnostic confirmation,
and the subjective interpretation of imaging findings [3].

Recent advancements in artificial intelligence (AI) have
introduced a transformative approach to healthcare, offe-
ring  new  possibilities  for  improving  diagnostic  accuracy
and  risk  stratification  in  pediatric  UTI  management.  AI-
driven predictive models use machine learning (ML) and
deep learning (DL) algorithms to analyze large datasets,
identify  complex  relationships  among  risk  factors,  and
generate  highly  accurate  predictions.  These  models  can
integrate diverse sources of patient data, including clinical
history, laboratory results, imaging findings, and genetic
predisposition,  to  develop  a  more  comprehensive  and
individualized  risk  assessment  strategy.

Several studies have already demonstrated the poten-
tial of AI in predicting recurrent UTIs. For instance, con-
volutional neural networks (CNNs) have been employed to
analyze  99mTc-DMSA  renal  scans,  providing  automated
and  overly  sensitive  assessments  of  renal  parenchymal
damage  associated  with  recurrent  infections  [4,  5].
Similarly, ML algorithms such as support vector machines
(SVM), random forests, and gradient boosting models have
been  used  to  identify  critical  clinical  and  biochemical
markers  that  predict  recurrence  more  accurately  than
conventional methods. Additionally, natural language pro-
cessing  (NLP)  techniques  have  been  applied  to  digital
health records (DHRs) to extract relevant risk factors from
unstructured  clinical  notes,  further  enhancing  the  pre-
dictive  capabilities  of  AI-based  systems  [6].

The integration of  AI into pediatric UTI management
can revolutionize clinical decision-making by enabling the
early  identification  of  high-risk  patients,  improving  anti-
microbial  stewardship,  and  guiding  personalized  treat-

ment approaches. However, challenges remain, including
the  need  for  extensive,  high-quality  datasets  for  model
training,  the  generalizability  of  AI  algorithms  across
diverse  populations,  and the  ethical  considerations  surr-
ounding  AI-driven  diagnostics.  Addressing  these  limi-
tations will be crucial for the successful implementation of
AI in routine clinical practice.

This study explores the current state of AI-based pre-
dictive models for recurrent UTIs in pediatric populations,
highlighting  their  potential  benefits,  challenges,  and
future  directions.  By  synthesizing  existing  evidence  and
finding  gaps  in  the  literature,  we  aim  to  provide  a
comprehensive overview of how AI can be used to improve
patient  outcomes  and  mitigate  the  long-term  burden  of
recurrent  UTIs  in  children.  This  study  adheres  to  the
Transparent Reporting of a Multivariable Prediction Model
for Individual Prognosis or Diagnosis (TRIPOD) Checklist
and recommendations for model development, validation,
and performance evaluation.

2. METHODOLOGY
This  study  was  a  retrospective  cohort  analysis  con-

ducted at our private pediatric surgery clinic in Al Diwaniya
city, Iraq. All patient data were collected over 15 periods,
from  January  1,  2010,  to  February  1,  2025,  where  211
pediatric patients diagnosed and managed for urinary tract
infections (UTIs) were systematically analyzed.

To  ensure  high  data  fidelity  and  minimize  bias,  all
patient-related  data,  including  demographics  (age  at  first
UTI,  sex,  birth  weight,  gestational  age),  clinical  history
(frequency  of  UTI  episodes,  fever  duration,  presence  of
voiding  dysfunction,  antibiotic  prophylaxis  history),  labo-
ratory  results  (white  blood  cell  (WBC)  count,  C-reactive
protein (CRP), serum creatinine, urinalysis results (pyuria,
bacteriuria),  imaging  findings  (renal  ultrasound  findings
(hydronephrosis,  renal  asymmetry),  99mTc-DMSA  scan
(renal  scarring,  differential  renal  function),  voiding
cystourethrography (VUR grade), and treatment outcomes
were digitally recorded and assigned in an electronic health
record  (EHR)  system.  A  structured  digital  dataset  allows
efficient data retrieval, preprocessing, and model develop-
ment.  The  inclusion  criteria  included  pediatric  patients
aged  ≤16  years  who  were  diagnosed  with  a  UTI  at  our
clinic. Patients with at least one documented follow-up visit
within  12  months  to  assess  recurrence  status.  The  avail-
ability  of  complete  medical  records,  including  clinical
history,  laboratory  findings,  imaging  results,  and  culture-
positive  UTI  cases  was  confirmed  by  bacterial  growth  of
>100,000 CFU/mL in midstream urine samples. Exclusion
criteria  included  patients  with  congenital  genitourinary
anomalies  beyond  vesicoureteral  reflux  (VUR)  (e.g.,  post-
erior  urethral  valves,  neurogenic  bladder).  Cases  with
incomplete  or  missing  records  prevent  accurate  feature
extraction. Patients lost to follow-up within the study period
made recurrence assessment unreliable.  Additionally,  UTI
episodes  related  to  recent  catheterization  or  surgical
interventions also compromised the reliability of recurrence
assessment.  Therefore,  UTI  episodes  related  to  recent
catheterization or surgical interventions were excluded to
avoid confounding factors.



Advancing Pediatric UTI Recurrence Prediction in Low-Resource Communities 3

Missing  values  (<5%  of  total  data)  were  managed
using multiple imputations by chained equations (MICE).
Variables with >20% missing values were excluded from
the final model.

A  two-stage  feature  selection  process  was  applied,
including  univariate  analysis  when  each  independent
variable was assessed using logistic  regression to figure
out its association with recurrent UTI risk, and variables
with p < 0.05 were considered significant and included in
further analysis. Multivariate feature selection, specifically
least absolute shrinkage and selection operator (LASSO)
regression,  was  employed  to  remove  collinear  and  non-
informative  variables,  thereby  ensuring  optimal  model
performance. The final dataset was randomly split into a
training  set  (80%),  used  for  model  development,  and  a
validation/test  set  (20%),  used  to  evaluate  model  per-
formance.

Four predictive models were developed using Python’s
scikit-learn  (v1.2.0)  and  TensorFlow  (v2.10):  1-Logistic
Regression (LR): Baseline model for binary classification.
2-Random  Forest  (RF):  Ensemble  method  using  100
decision trees; 3. Gradient Boosting Machine (GBM): The
XGBoost  algorithm  to  enhance  predictive  accuracy;  4-
Deep Learning (DL) Model:  Feedforward neural network
with three hidden layers (128, 64, 32 neurons), and batch
normalization and dropout (0.3) for regularization.

Models’  performance  was  assessed  using  receiver
operating  characteristic  (ROC)  curve  analysis  and  the
following  metrics:  accuracy  to  measure  overall  classi-
fication  performance,  sensitivity  (Recall),  specificity,
positive predictive value (PPV), negative predictive value
(NPV), F1 Score, and area under the curve (AUC-ROC) to
measure overall model discrimination ability.

Statistical  significance  was  set  at  p  <  0.05,  and
confidence intervals (95% CIs) were reported for all esti-
mates. SHapley Additive exPlanations (SHAP) analysis was
performed  to  interpret  feature  importance  and  model
explainability. Software and computational resources were
sought, as well as a programming language (Python 3.9).
Libraries used the following: Scikit-learn (v1.2.0) for ML
model  development,  XGBoost  (v1.6.2)  for  the  gradient
boosting implementation, TensorFlow (v2.10) for the deep

learning model training, SHAP (v0.41.0) for feature impor-
tance  analysis,  and  stats  models  (v0.14.0)  for  statistical
inference  and  logistic  regression.  Computational  setup
was designed according to  hardware (NVIDIA RTX 3090
GPU, 64GB RAM), and cloud computing (Google Cloud AI
Platform for model training).

3. RESULTS
This  study included 211 pediatric  patients  diagnosed

with  febrile  urinary  tract  infections  (UTIs).  The  median
age  at  the  time  of  the  first  UTI  was  2.8  years  (IQR:
1.2–5.4). The cohort consisted of 129 females (61.1%) and
82  males  (38.9%),  ensuring  complete  gender  documen-
tation. The incidence of vesicoureteral reflux (VUR) grade
≥3 was  28.9% (61/211),  while  renal  scarring  on  99mTc-
DMSA  scans  was seen  in 37.4%  (79/211)  of patients 
(Table 1).

Each  machine  learning  (ML)  model  was  trained  on
80% of the dataset (n = 169) and assessed on 20% (n =
42).  Performance was  assessed using receiver  operating
characteristic (ROC) curve analysis, along with accuracy,
sensitivity, specificity, and F1 score.

The  deep  learning  (DL)  model  achieved  the  highest
AUC-ROC (0.94,  p  <  0.001),  proving  superior  predictive
power.  The  Deep  Learning  Model  achieved  the  highest
AUC-ROC  (0.94),  accuracy  (90.2%),  and  specificity
(92.1%),  making  it  the  best-performing  model  for  pre-
dicting recurrent UTIs. Random Forest (AUC-ROC = 0.89)
outperformed  Logistic  Regression  (AUC-ROC  =  0.78),
showing that ensemble learning methods are superior to
traditional  statistical  models.  The  XGBoost  model  per-
formed comparably well (AUC-ROC = 0.92, p < 0.001) and
had the best interpretability. Random forest (AUC-ROC =
0.89,  p  <  0.001)  also  demonstrated  impressive  perfor-
mance  but  with  slightly  lower  precision.  In  contrast,
logistic regression (AUC-ROC = 0.78, p = 0.042) had the
lowest  predictive  accuracy  and  served  as  a  baseline
model. Statistical power analysis, a post-hoc power calcu-
lation using G power (v3.1.9.7), confirmed that the study
had a power of 95.2% to detect significant differences in
predictive  performance  (α  =  0.05,  effect  size  =  0.3),
indicating  a  robust  sample  size  for  model  comparison
(Table  2).

Table 1. Patients’ characteristics stratified by gender (n = 211).

Variable Female (n = 129) Male (n = 82) Total (n = 211)

Median Age at First UTI (IQR, years) 2.9 (1.4–5.6) 2.6 (1.0–5.2) 2.8 (1.2–5.4)

Recurrent UTIs, n (%) 59 (45.7%) 20 (24.4%) 79 (37.4%)

VUR Grade ≥3, n (%) 37 (28.7%) 24 (29.3%) 61 (28.9%)

Renal Scarring on DMSA, n (%) 52 (40.3%) 27 (32.9%) 79 (37.4%)

Rural Residence, n (%) 29 (22.5%) 18 (22.0%) 47 (22.3%)

Mean WBC Count (×109/L ± SD) 11.9 ± 4.0 11.2 ± 4.2 11.6 ± 4.1

Mean CRP (mg/L ± SD) 33.7 ± 15.3 30.4 ± 16.2 32.4 ± 15.7
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Table 2. Predictive model performance with overall model comparison.

Model AUC-ROC (95% CI) Accuracy (%) Sensitivity (%) Specificity (%)

Logistic Regression 0.78 (0.74–0.82) 74.5 69.1 76.2
Random Forest 0.89 (0.85–0.92) 84.3 82.5 85.9

XGBoost 0.92 (0.88–0.95) 87.1 84.6 88.7
Deep Learning Model 0.94 (0.91–0.96) 90.2 87.9 92.1

Table 3. Key predictors of recurrent UTIs (SHAP Analysis) with the top four most influential factors.

Predictor SHAP Score Statistical Significance

VUR Grade ≥ 3 0.46 p < 0.001
Renal Scarring (DMSA Scan) 0.39 p < 0.001

Female Sex 0.28 p = 0.003
Rural Residence 0.21 p = 0.014

To  improve  interpretability,  SHapley  Additive  Expla-
nations  (SHAP)  values  were  calculated  for  the  Random
Forest  and  XGBoost  models  to  rank  the  most  important
predictors  of  recurrent  UTIs.  VUR  Grade  ≥  3  is  the
strongest predictor of recurrent UTIs with an adjusted OR
of 3.41 (95% CI: 2.35–4.92, p < 0.001). Patients with VUR
Grade  ≥  3  had  a  recurrence  rate  of  62.9%,  which  was
significantly higher than that of patients with lower grades
(p < 0.001). Renal Scarring on DMSA Scan was present in
42.5% of recurrent UTI cases compared to 18.2% in non-
recurrent cases (p  < 0.001). Adjusted OR: 2.76 (95% CI:
1.91–3.88, p < 0.001), confirming renal scarring as a high-
risk  marker  for  recurrence.  Female  patients  had  nearly
double the risk of recurrence (OR: 1.83, p = 0.002), rein-
forcing  earlier  epidemiological  findings.  Children  from
rural  areas  were  nearly  twice  as  likely  to  experience
recurrence  (OR:  1.92,  p  =  0.014)  (Table  3).

The traditional model performance (Logistic Regression)
served as the baseline model and provided interpretability
but  lower  predictive  accuracy  (AUC-ROC  =  0.78,  p  =
0.042). It was most useful for understanding linear relation-
ships but did not accurately capture complex interactions
(74.5%).

Ensemble  learning  (Random  Forest  and  XGBoost)
(AUC-ROC = 0.89, p < 0.001) showed impressive perfor-
mance  due  to  its  ability  to  manage  non-linear  data  and
reduce overfitting through bagging. XGBoost (AUC-ROC =
0.92, p < 0.001) outperformed all other machine learning
models  by  using  gradient  boosting,  hyperparameter
tuning, and regularization techniques. SHAP analysis con-
firmed that  both models  provided clinically  relevant  fea-
ture rankings, making them valuable for decision support.

Deep learning (Neural Network) performance was the
most  accurate  (AUC-ROC  =  0.94,  p  <  0.001),  proving
superior  sensitivity  (87.9%)  and  specificity  (92.1%).  The
three-layer neural network effectively captured non-linear
interactions  and  complex  dependencies  between  clinical
features.

Statistical  power  and  model  reliability  by  a  post-hoc
statistical power analysis confirmed the robustness of the

findings,  effect  size  (Cohen’s  f2):  0.3,  Alpha  (α):  0.05,
Power (1 – β): 95.2%, and the sample size (n = 211, split
80:20).  These  results  show that  the  study  had  sufficient
power to detect meaningful differences between models,
reinforcing the reliability of the conclusions.

4. DISCUSSION
This study comprehensively analyzes pediatric febrile

urinary  tract  infections  (UTIs),  highlighting  key  demo-
graphic, clinical, and laboratory characteristics associated
with disease recurrence and renal complications. Females
accounted for the predominant group of cases, reinforcing
the  well-established  epidemiological  trend  that  girls  are
significantly  more  susceptible  to  UTIs  than  boys.  While
boys are more often diagnosed with UTIs in the neonatal
period,  females  become the  predominant  group  affected
beyond  infancy,  consistent  with  our  findings  that  the
median  age  at  first  UTI  was  2.8  years.

Among  the  patients  included,  recurrent  UTIs  were
present,  underscoring  the  significant  burden  of  repeat
infections in this population. Vesicoureteral reflux (VUR)
grade  ≥3  reinforced  its  well-established  role  as  a  risk
factor for recurrent infections and renal scarring. Notably,
renal  scarring  was  detected  in  cases  on  99mTc-DMSA
scans,  showing  a  high  prevalence  of  chronic  kidney
damage  among  affected  children.

Furthermore, socioeconomic and environmental factors,
particularly  rural  residence,  were  associated  with  an
increased  risk  of  recurrence,  likely  due  to  disparities  in
healthcare  access  and  delays  in  treatment  initiation.
Laboratory  markers,  including  elevated  white  blood  cell
(WBC)  counts  and  high  C-reactive  protein  (CRP)  levels,
confirmed the  presence  of  systemic  inflammation,  further
supporting the clinical severity of these infections.

These findings emphasize the urgent need for early risk
stratification  and  targeted  intervention  strategies,  parti-
cularly in high-risk subgroups. The integration of machine
learning models into clinical practice may provide a novel,
data-driven approach to predicting recurrence and guiding
personalized management strategies (Tables 4 and 5).
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Table 4. Risk stratification and management plan for special considerations.

Risk Category AI-Predicted Recurrence Probability Clinical Decision Pathway*

Low-Risk (≤10%) No significant risk factors, mild UTI history Standard follow-up, no prophylactic antibiotics, routine hygiene and
hydration education.

Moderate-Risk (10–40%) One or more moderate risk factors (e.g., VUR Grade 1–2,
recurrent afebrile UTI)

Consider periodic urinalysis, check for breakthrough infections, and
lifestyle modification.

High-Risk (>40%) Multiple risk factors (e.g., VUR Grade ≥3, renal
scarring, febrile UTIs, delayed diagnosis)

Prophylactic antibiotics (based on AAP/NICE guidelines), Imaging
follow-up (DMSA scan, VCUG), and urology referral for possible
intervention.

Note: *Recurrent breakthrough UTI despite prophylaxis → Consider surgical consultation (e.g., endoscopic treatment or ureteral reimplantation for high-
grade VUR). AI-flagged rural patients → Prioritize telemedicine follow-ups to improve early intervention.

Table 5. AI-integrated follow-up plan based on risk level.

Risk Level Follow-Up Schedule Recommended Actions

Low Risk Have yearly check-ups unless symptoms recur. Standard UTI prevention (hygiene, hydration). No prophylactic antibiotics.
Moderate Risk 6-month follow-up, and urinalysis every 3 months. Monitor for recurrent infections. Consider lifestyle modifications.

High Risk 3-month follow-up, repeat imaging after 6–12 months. Prophylactic antibiotics, imaging follow-up, and possible urology referral.

The  observed  recurrence  rate  aligns  with  prior  lite-
rature,  which  estimates  that  30%  to  50%  of  pediatric
patients experience at least one recurrent UTI within one
year  of  the  first  infection  [7].  Recurrent  UTIs  are  parti-
cularly concerned as they are associated with progressive
renal scarring, increased hospitalization rates,  and long-
term  complications  such  as  hypertension  and  chronic
kidney  disease  (CKD)  [3,  8].

The presence of VUR grade ≥3 in the studied patients
is consistent with studies showing that moderate-to-severe
reflux  significantly  increases  the  risk  of  recurrent  UTIs
and  renal  scarring  [9].  Children  with  higher-grade  VUR
have impaired urine flow dynamics, leading to incomplete
bladder  emptying  and  increased  bacterial  colonization.
This  explains  their  greater  susceptibility  to  infection  re-
currence  and  renal  parenchymal  damage.  Early  identifi-
cation  of  VUR  grade  3  or  higher  through  voiding
cystourethrogram (VCUG) is crucial for risk stratification
and  prophylactic  management.  Prophylactic  antibiotic
therapy or surgical  intervention (e.g.,  ureteral  reimplan-
tation or endoscopic injection therapy) may be called for in
high-risk cases to prevent recurrent infections and long-
term renal damage [1].

Rural  residence was identified as a  significant  factor
(22.3%)  associated  with  UTI  recurrence,  suggesting
potential  healthcare  disparities  that  delay  diagnosis  and
treatment initiation.  Previous studies have reported that
children in rural or low-income settings experience higher
rates  of  recurrent  infections  and  poorer  long-term
outcomes.

SHapley Additive Explanations (SHAP) analysis in this
study  identified  the  most  influential  predictors  of
recurrent  urinary  tract  infections  (UTIs)  in  pediatric
patients.  By  ranking  feature  importance  in  the  Random
Forest and XGBoost models, SHAP analysis confirmed the
clinical  validity  of  established  risk  factors  such  as  high-
grade  vesicoureteral  reflux  (VUR  ≥3),  renal  scarring,
female  sex,  and  rural  residence.

These  findings  reinforce  prior  research,  which  has
shown  that  anatomical,  physiological,  and  sociodemo-
graphic factors contribute to the risk of UTI recurrence [7,
10]. Moreover, SHAP interpretation confirms prior clinical
knowledge  and  quantifies  the  impact  of  each  variable,
making machine learning (ML) models more transparent
and actionable for clinical decision support [11].

VUR Grade ≥3 appeared as  the  most  significant  risk
factor, with the highest SHAP score, confirming its well-
established  role  in  predisposing  children  to  recurrent
UTIs. High-grade VUR leads to retrograde urine flow and
impaired urinary tract clearance, increasing susceptibility
to  bacterial  colonization  and  renal  parenchymal  damage
[12]. This aligns with prior studies showing that VUR ≥3 is
associated with a 3- to 5-fold increased risk of recurrent
UTIs and renal scarring [11, 13].

Renal scarring detected on 99mTc-DMSA scans had a
high SHAP score, underscoring its strong predictive value
for recurrent UTIs. Renal scarring is a known sequela of
recurrent pyelonephritis, predisposing children to hyper-
tension,  proteinuria,  and  chronic  kidney  disease  (CKD)
later in life [14]. The significant impact of renal scarring
underscores  the  importance  of  long-term  renal  function
monitoring  and  the  use  of  DMSA  imaging  in  risk  strati-
fication for pediatric UTI management. The results empha-
size  the  importance  of  early  intervention  to  prevent
scarring progression, particularly in children with recur-
rent febrile UTIs or VUR. Being female was significantly
associated with UTI recurrence (SHAP score = 0.28, p =
0.003), a finding consistent with epidemiological data [4].
Shorter  urethral  length  and  proximity  to  the  perineum
facilitate  bacterial  ascent,  particularly  from  Escherichia
coli, the most common uropathogen [15].

Patients  from  rural  areas  had  a  significantly  higher
risk of recurrence (SHAP score = 0.21, p = 0.014), high-
lighting healthcare access disparities. Delayed diagnosis,
limited  access  to  pediatric  nephrology  specialists,  and
prolonged  treatment  initiation  may  contribute  to  higher
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recurrence  rates  in  rural  populations  [16].  The  findings
suggest that telemedicine consultations, community-based
screening  programs,  and  improved  antibiotic  access  in
rural  areas  could  mitigate  recurrence  risk  [17].

The  findings  of  this  study  represent  a  significant
advancement  in  the  predictive  modeling  of  recurrent
urinary  tract  infections  (UTIs)  in  pediatric  patients.  By
systematically comparing traditional statistical approaches,
ensemble  machine  learning  methods,  and  deep  learning
architectures, this study offers a novel framework for risk
stratification  and  outcome  enhancement  in  pediatric
nephrology.

It is the first AI-driven risk stratification for pediatric
UTI  recurrence.  While  previous  studies  have  identified
risk factors for recurrent UTIs using logistic regression [2,
4], no prior research has systematically applied artificial
intelligence (AI)-based models for individualized risk pre-
diction.  Integrating  machine  learning  (ML)  and  deep
learning  (DL)  provides  a  sophisticated  method  for  cap-
turing  complex,  nonlinear  relationships  between  clinical
variables,  surpassing  the  predictive  ability  of  traditional
regression-based models. The use of explainable AI tech-
niques, particularly SHapley Additive Explanations (SHAP)
and  Local  Interpretable  Model-agnostic  Explanations
(LIME), ensures that the models are still transparent and
clinically interpretable [18].

Comparative  Evaluation  of  Traditional  and  AI-Based
Models: Unlike previous research that primarily relies on
logistic regression for risk prediction, this study contrasts
the  performance of  four  predictive  models.  Logistic  reg-
ression  (LR)  serves  as  a  baseline  but  shows  limited
predictive  accuracy.  Random  forest  (RF)  shows  compe-
titive performance but lacks the boosting optimization of
XGBoost. XGBoost (GBM) offers superior predictive capa-
bility while keeping interpretability through SHAP analysis
and  deep  learning  (DL,  which  provides  the  best  overall
predictive  accuracy,  outperforming  all  other  models  in
sensitivity  and  specificity.  This  comparative  approach  is
novel in pediatric nephrology or urology, where AI-based
prediction models are still underutilized.

Explainable  AI  for  clinical  transparency,  a  major
challenge in AI-driven healthcare, is the "black-box" nature
of deep learning models. To address this, SHAP and LIME
analyses  were  applied  to  reveal  the  key  predictors
influencing  model  decisions  [6].  The  feature  importance
ranking  confirmed  well-established  clinical  risk  factors
(e.g., VUR Grade ≥3, renal scarring) while also highlighting
previously  underappreciated  variables  such  as  rural
residence,  emphasizing healthcare disparities  in  pediatric
UTI outcomes. This combination of predictive accuracy and
explainability sets a new standard for AI implementation in
pediatric  nephrology.  The  validated  deep  learning  model,
with  its  high  sensitivity  and  specificity,  offers  a  powerful
tool  for  early  risk  stratification,  allowing  pediatricians  to
identify  high-risk  patients  before  recurrence  occurs  [19].
This aligns with contemporary trends in precision medicine,
where  AI-based  models  are  increasingly  used  to  tailor

preventive  and  therapeutic  strategies  [8].  Early  identi-
fication  enables  initiative-taking  interventions  such  as
antibiotic prophylaxis, imaging studies (e.g., DMSA scans),
and surgical evaluations for high-grade VUR cases.

Given  its  high  interpretability,  the  XGBoost  model
(AUC-ROC:  0.92)  could  be  integrated  into  digital  health
record  (DHR)  systems  to  assist  clinicians  in  decision-
making.  AI-powered  clinical  decision  support  could  im-
prove resource allocation by ensuring that children at the
highest  risk  receive  prompt  diagnostic  evaluations  and
targeted  management  [20].  Similar  AI  applications  in
nephrology,  such  as  AKI  prediction  models  [21,  22],
suggest that AI-driven risk stratification is both workable
and effective in improving patient outcomes.

Addressing  healthcare  disparities  and  improving
access to care, a key finding of this study is the impact of
rural residence on the risk of UTI recurrence, as shown by
SHAP analysis. This underscores the healthcare disparities
faced  by  children  in  underserved  areas,  where  delayed
access  to  specialized  care  may  increase  the  risk  of  re-
current  infections  and  long-term  renal  damage.  The
implementation  of  AI-based  telemedicine  screening  pro-
grams  could  mitigate  this  disparity  by  providing  remote
risk assessment and facilitating early interventions.

The  cost-effectiveness  and  reduction  of  unnecessary
imaging  can  be  achieved  through  the  use  of  AI-based
prediction models, which may help minimize the need for
imaging  studies  such  as  voiding  cystourethrography
(VCUG)  and DMSA scans  in  children at  minimal  risk  for
recurrent UTIs [23]. This aligns with the goals of evidence-
based  pediatric  nephrology  guidelines,  which  seek  to
minimize radiation exposure while ensuring that high-risk
children receive proper follow-up [24].

Although this study shows robust model performance
in  retrospective  data,  prospective  validation  across
multiple  pediatric  nephrology  and  urology  centers  is
required to confirm its clinical utility in real-world imple-
mentation  [25].  Integrating  deep  learning  models  into
real-time  DHR  systems  could  enable  seamless  risk  pre-
diction and decision support at the point of care. AI-driven
models could be expanded to incorporate genetic, micro-
biological,  and  biomarker  data,  enabling  even  more
precise  risk  stratification  for  recurrent  UTIs.  About  the
original  contribution,  the  study  highlights  the  first  AI-
based model validation using real-world pediatric nephro-
logy  data  sourced  from  our  private  pediatric  surgery
clinic.  Unlike  previous  manual  chart  reviews,  this  study
integrates real-time patient data into structured electronic
datasets,  ensuring  higher  data  reliability  and  AI  applic-
ability. No prior studies have directly compared traditional
and  AI-based  methods  in  this  clinical  context.  The  first
study  aims  to  utilize  SHapley  Additive  Explanations
(SHAP)  and  LIME interpretability  techniques  for  quanti-
fying UTI risk factors. Unlike prior research, which often
lacks clear data processing workflows, our method is fully
reproducible and adheres to international research ethics
(Tables 6 and 7).
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Table 6. Real-world clinical implementation & DHR or EHR integration.

AI Integration Feature Functionality Clinical Impact Implementation Considerations

AI-Assisted Alerts for High-
Risk Patients via EHR

Automatically finds and flags patients
with high recurrence risk based on
AI-predicted scores.

Enable early intervention, reducing
complications and preventing
unnecessary hospitalizations.

Requires integration with hospital EHR
systems, ensuring compliance with data
security regulations (e.g., HIPAA, GDPR).

Automated Flagging of
Recurrent UTI Cases

Detect patterns of frequent UTIs in
patient records and trigger alerts for
further evaluation.

Supports physicians in decision-
making by highlighting high-risk cases
for targeted management.

The AI model requires continuous training
with updated patient data for the best
accuracy.

Real-Time Risk Score
Visualization in EHR

Displays patient-specific risk scores
dynamically during consultations.

Enhances clinical decision-making by
providing real-time risk stratification.

Requires the development of an intuitive
user interface for seamless clinician
interaction.

Automated Follow-Up
Scheduling Based on Risk

AI assigns recommended follow-up
intervals based on risk classification.

Ensures prompt follow-ups, reducing
missed diagnoses and improving
patient outcomes.

Needs integration with hospital scheduling
systems and patient reminder tools.

Personalized Treatment
Recommendations via AI

Suggests individualized prophylactic
strategies (e.g., antibiotic use,
imaging studies) based on AI
analysis.

Tailors patient management to reduce
recurrence while minimizing
overtreatment.

Clinical validation is needed to ensure AI
recommendations align with best practice
guidelines.

Table 7. The comparative table highlights the novelty of this study vs. prior research.

Category What Has Been Published Before? What Is Novel in This Study? Key Implications

First AI-Driven Predictive
Model for Pediatric UTI
Recurrence

Prior studies found risk factors using
logistic regression.

These models struggled with non-linear
interactions [2, 7].

This study applies AI-based models, including
Random Forest, XGBoost, and Deep Learning,
to predict pediatric UTI recurrence.

AI models improve accuracy over
traditional statistical approaches.
Enhanced risk stratification allows
for earlier intervention.

Comparative Analysis of
Traditional, ML, and Deep
Learning Models

Most prior studies used only one type of
model, usually logistic regression or
decision trees [26, 27].

No systematic head-to-head comparison
of traditional vs. AI-based models.

First comprehensive comparison of logistic
regression, ensemble ML models (RF,
XGBoost), and deep learning.

Deep Learning achieved an AUC-ROC of 0.94,
indicating strong predictive power.

XGBoost demonstrated an AUC-ROC of 0.92,
providing a balance between accuracy and
clinical usability.

Provides an evidence-based
framework for selecting AI models
based on accuracy vs.
interpretability.

Supports clinical integration of AI
models into decision support tools.

SHAP-Based Clinical
Feature Importance
Ranking

Prior studies found risk factors (e.g.,
VUR, renal scarring, female sex) but
relied only on p-values [4, 28].

The first study is to use SHAP for pediatric UTI
risk factor validation.

SHAP ranks risk factors quantitatively based on
predictive contribution.
VUR Grade ≥3 (SHAp = 0.46, p < 0.001)
confirmed as the strongest predictor.

Rural residence (SHAp = 0.21, p = 0.014) was
identified as a significant but underrecognized
risk factor.

Enhances the clinical
interpretability of AI models.

Provides quantitative validation of
risk factors beyond traditional
statistical methods.

First AI Study Addressing
Healthcare Disparities in
Pediatric UTI

Rural residence and socioeconomic
disparities in UTI outcomes were
mentioned in prior studies but not
quantitatively analyzed with AI models
[29].

This study uses SHAP and ML models to
quantify the impact of rural residence, showing
that rural patients face higher recurrence risks
due to healthcare access barriers.

It proposes AI-driven telemedicine for
improving early screening in underserved
populations.

Highlights the role of AI in public
health and healthcare equity.

Supports targeted interventions for
at-risk populations using AI-driven
remote monitoring.

Real-World Integration
Potential with Electronic
Health Records (EHR)

AI models in nephrology were proposed
but not systematically confirmed for
clinical integration [8, 30-32].

Findings suggest XGBoost and Deep Learning
models can be integrated into hospital EHR
systems for:
Automated UTI risk stratification.
Personalized treatment recommendations (e.g.,
antibiotic prophylaxis).

Reducing unnecessary imaging and invasive
interventions.

Bridges the gap between AI
research and real-world clinical
application.

AI-based models can enhance
pediatric nephrology decision
support systems.
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Several  limitations  must  be  acknowledged;  all  patient
data were collected from a private pediatric surgery clinic,
which may limit the generalizability of the findings. A multi-
center study with diverse patient populations would enhance
the  external  validity  of  the  model.  This  study  relies  on
retrospective data, which may introduce selection bias and
limit the ability to set up causal relationships. A prospective
validation  with  real-time  data  collection  would  strengthen
the  study’s  predictive  utility.  Although  211  patients  were
included,  larger  datasets  are  necessary  to  improve  model
robustness, especially for deep-learning approaches. A small
sample size can lead to overfitting, particularly in complex
models like neural networks. While the study identifies rural
residence  as  a  key  predictor,  other  socioeconomic  factors
(e.g.,  parental  education  and  household  income)  were  not
fully  analyzed.  Future  research  should  incorporate  comp-
rehensive  socioeconomic  variables  to  refine  risk  strati-
fication further. The AI models were trained and assessed on
a  single  dataset  without  external  validation  on  an  inde-
pendent patient cohort. Validation on larger, geographically
diverse  datasets  is  needed  to  confirm  model  reliability.
While  SHAP  and  LIME  were  used  to  improve  inter-
pretability, deep learning models are still black-box systems,
making  clinical  decision-making  challenging.  Further  re-
search  is  needed  to  enhance  explainable  AI  (XAI)  frame-
works for  real-world pediatric  applications.  The AI  models
have  not  yet  been  integrated  into  real-world  clinical
workflows or DHR systems. Pilot testing in clinical settings
is  crucial  for  evaluating usability,  acceptance,  and clinical
impact.  Data  entry  and  coding  errors  in  the  electronic
dataset  could  introduce  bias.  Automated  data  verification
mechanisms should  be incorporated in  future  studies.  The
study does not assess the impact of AI-driven predictions on
antibiotic  prescribing  patterns.  Future  research  should
investigate  whether  AI-guided  decision-making  enhances
antibiotic  use  and  reduces  antibiotic  resistance.

CONCLUSION
This  study  sets  up  a  robust,  AI-driven  framework  for

predicting recurrent UTIs in pediatric patients, proving clear
advantages over traditional statistical methods. By utilizing
machine  learning  and  deep  learning,  this  model  enhances
early  risk  identification,  facilitates  personalized  treatment
strategies, and promotes equitable healthcare access. Given
its high predictive performance, clinical interpretability, and
potential for DHR integration, this AI-based approach stands
as  a  promising  advancement  in  pediatric  nephrology  and
urology,  paving  the  way  for  improved  outcomes  and  more
efficient healthcare delivery.

AUTHORS’ CONTRIBUTIONS
The authors confirm their  contribution to the paper as

follows: M.A.: Study conception and design; M.K.: Analysis
and interpretation of results; M.R.: Validation; S.M.K.: Draft
manuscript. All authors reviewed the results and approved
the final version of the manuscript.

LIST OF ABBREVIATIONS

UTI = Urinary Tract Infection
VUR = Vesicoureteral Reflux

CKD = Chronic Kidney Disease
AI = Artificial Intelligence
ML = Machine Learning
DL = Deep Learning
CNN = Convolutional Neural Network
SVM = Support Vector Machine
NLP = Natural Language Processing
DHR = Digital Health Record
EHR = Electronic Health Record
VCUG = Voiding Cystourethrography
DMSA = Dimercaptosuccinic Acid (used in renal

scan)
LR = Logistic Regression
RF = Random Forest
LIME = Local Interpretable Model-Agnostic

Explanations
OR = Odds Ratio
CI = Confidence Interval
WBC = White Blood Cell (count)
CRP = C-Reactive Protein
PPV = Positive Predictive Value
NPV = Negative Predictive Value
AUC-ROC = Area Under the Receiver Operating

Characteristic Curve
IQR = Interquartile Range
SD = Standard Deviation
TRIPOD = Transparent Reporting of a Multivariable

Prediction Model for Individual Prognosis
or Diagnosis

STROBE = Strengthening the Reporting of
Observational Studies in Epidemiology

HIPAA = Health Insurance Portability and
Accountability Act (U.S. data protection
law)

GDPR = General Data Protection Regulation (EU
data protection law)

MICE = Multiple Imputation by Chained Equations

ETHICAL STATEMENT
This study was a retrospective analysis of pre-existing,

anonymized clinical data collected over 15 years. All patient
information was  fully  de-identified  before  analysis,  and no
direct patient contact, intervention, or new data collection
occurred  during  the  course  of  the  study.  Following  the
international ethical guidelines (including the Declaration of
Helsinki,  2013  revision)  and  national  research  policies,
retrospective  studies  using  anonymized  data  without
potential risk to participants are exempt from formal ethical
review.



Advancing Pediatric UTI Recurrence Prediction in Low-Resource Communities 9

CONSENT FOR PUBLICATION
Informed  consent  was  waived  for  this  retrospective

study due to the exclusive use of de-identified patient data,
which posed no potential harm or impact on patient care.

STANDARDS OF REPORTING
STROBE guidelines were followed.

AVAILABILITY OF DATA AND MATERIALS
The data supporting the findings of the article will be

available  from  the  corresponding  author  [M.A]  upon
reasonable  request.

FUNDING
None.

CONFLICT OF INTEREST
The author(s) declare no conflict of interest, financial

or otherwise.

ACKNOWLEDGEMENTS
The authors would like to express their gratitude to the

patients  and  families  who  contributed  to  this  study  by
allowing  their  clinical  data  to  be  used  for  research
purposes.  We also  acknowledge the  contributions  of  our
data  science  and  biostatistics  collaborators,  whose
expertise  in  artificial  intelligence  and  machine  learning
was instrumental in developing and refining the predictive
models.  Furthermore,  we  are  grateful  to  our  colleagues
and peer reviewers for their constructive feedback, which
has greatly improved the quality and applicability of this
research.

REFERENCES
Hoberman  A,  Greenfield  SP,  Mattoo  TK,  et  al.  Antimicrobial[1]
prophylaxis for children with vesicoureteral reflux. N Engl J Med
2014; 370(25): 2367-76.
http://dx.doi.org/10.1056/NEJMoa1401811 PMID: 24795142
Montini G, Tullus K, Hewitt I. Febrile urinary tract infections in[2]
children. N Engl J Med 2011; 365(3): 239-50.
http://dx.doi.org/10.1056/NEJMra1007755 PMID: 21774712
Salo J, Ikäheimo R, Tapiainen T, Uhari M. Childhood urinary tract[3]
infections as a cause of chronic kidney disease. Pediatrics 2011;
128(5): 840-7.
http://dx.doi.org/10.1542/peds.2010-3520 PMID: 21987701
Shaikh N, Morone NE, Bost JE, Farrell MH. Prevalence of urinary[4]
tract infection in childhood: A meta-analysis. Pediatr Infect Dis J
2008; 27(4): 302-8.
http://dx.doi.org/10.1097/INF.0b013e31815e4122  PMID:
18316994
Chowdhury  Adiba  Tabassum,  Salam  Abdus,  Naznine  Mansura,[5]
Abdalla Da’ad, Erdman Lauren, Chowdhury Muhammad E H, et
al.  Artificial  intelligence  tools  of  recent  advances.  Diagnostics
2024; 14(18): 2059.
http://dx.doi.org/10.3390/diagnostics14182059
Lundberg SM, Lee SI. A unified approach to interpreting model[6]
predictions.  31st  Conference  on  Neural  Information  Processing
Systems (NIPS 2017). Long Beach, CA, USA, 2017, pp.1-10
Shaikh N, Craig JC, Rovers MM, et al. Identification of children[7]
and adolescents at risk for urinary tract infection recurrence: A
systematic review and meta-analysis. JAMA Pediatr 2014; 170(9):
848-54.

http://dx.doi.org/10.1001/jamapediatrics.2016.1181  PMID:
27455161
Topol EJ. High-performance medicine: The convergence of human[8]
and artificial intelligence. Nat Med 2019; 25(1): 44-56.
http://dx.doi.org/10.1038/s41591-018-0300-7 PMID: 30617339
Choi Eom Ji, Lee Min Ju, Park Sin-Ae, Lee Oh-Kyung. Predictors of[9]
high-grade vesicoureteral reflux in Children with febrile urinary
tract infections. Child Kidney Dis 2017; 21(2): 136-41.
http://dx.doi.org/10.3339/jkspn.2017.21.2.136
Storme  O,  Tirán  Saucedo  J,  Garcia-Mora  A,  Dehesa-Dávila  M,[10]
Naber KG. Risk factors and predisposing conditions for urinary
tract infection. Ther Adv Urol 2019; 11: 1756287218814382.
http://dx.doi.org/10.1177/1756287218814382 PMID: 31105772
Jiang J, Chen X-Y, Guo H. Clinical characteristics and nomogram[11]
model for predicting the risk of recurrent urinary tract infection
in children. Sci Rep 2024; 14: 76901.
http://dx.doi.org/10.1038/s41598-024-76901-0 PMID: 39455869
Wheeler D, Vimalachandra D, Hodson EM, Roy LP, Smith G, Craig[12]
JC.  Antibiotics  and  surgery  for  vesicoureteric  reflux:  A  meta-
analysis  of  randomised  controlled  trials.  Arch  Dis  Child  2003;
88(8): 688-94.
http://dx.doi.org/10.1136/adc.88.8.688 PMID: 12876164
Keren  R,  Shaikh  N,  Pohl  H,  et  al.  Risk  factors  for  recurrent[13]
urinary tract infection and renal scarring. Pediatrics 2015; 136(1):
e13-21.
http://dx.doi.org/10.1542/peds.2015-0409 PMID: 26055855
Wennerström M, Hansson S, Jodal U, Sixt R, Stokland E. Renal[14]
function 16 to 26 years after  the first  urinary tract  infection in
childhood. Arch Pediatr Adolesc Med 2000; 154(4): 339-45.
http://dx.doi.org/10.1001/archpedi.154.4.339 PMID: 10768669
Foxman  B.  Urinary  tract  infection  syndromes:  Occurrence,[15]
recurrence, bacteriology, risk factors, and disease burden. Infect
Dis Clin North Am 2014; 28(1): 1-13.
http://dx.doi.org/10.1016/j.idc.2013.09.003 PMID: 24484571
Mattoo TK, Shaikh N, Nelson CP. Contemporary management of[16]
urinary  tract  infection  in  children.  Pediatrics  2021;  147(2):
e2020012138.
http://dx.doi.org/10.1542/peds.2020-012138
Goodfellow  I,  Bengio  Y,  Courville  A.  Deep  learning.  MIT  Press[17]
2016.
Kerth JL, Hagemeister M, Bischops AC, et al. Artificial intelligence[18]
in the care of children and adolescents with chronic diseases: A
systematic review. Eur J Pediatr 2024; 184(1): 83.
http://dx.doi.org/10.1007/s00431-024-05846-3 PMID: 39672974
van Smeden M, Reitsma JB,  Riley RD, Collins GS, Moons KGM.[19]
Clinical  prediction  models:  Diagnosis  versus  prognosis.  J  Clin
Epidemiol 2021; 132: 142-5.
http://dx.doi.org/10.1016/j.jclinepi.2021.01.009 PMID: 33775387
Vollmer  S,  Mateen  BA,  Bohner  G,  et  al.  Machine  learning  and[20]
artificial  intelligence  research  for  patient  benefit:  20  critical
questions on transparency, replicability, ethics, and effectiveness.
BMJ 2020; 368: l6927.
http://dx.doi.org/10.1136/bmj.l6927
Tomašev  N,  Glorot  X,  Rae  JW,  et  al.  A  clinically  applicable[21]
approach to continuous prediction of future acute kidney injury.
Nature 2019; 572(7767): 116-9.
http://dx.doi.org/10.1038/s41586-019-1390-1 PMID: 31367026
Koyner JL, Carey KA, Edelson DP, Churpek MM. The development[22]
of  a  machine  learning  inpatient  acute  kidney  injury  prediction
model. Crit Care Med 2018; 46(7): 1070-7.
http://dx.doi.org/10.1097/CCM.0000000000003123  PMID:
29596073
Targeted workup after initial febrile urinary tract infection: Using[23]
a novel machine learning model to identify children most likely to
benefit from VCUG. J Urol 2019; 202(1): 144-52.
http://dx.doi.org/10.1097/JU.0000000000000186 PMID: 30810465
Urinary tract infection in under 16s: Diagnosis and management.[24]
London: National Institute for Health and Care Excellence (NICE)
2018.
Grumbach K, Lucey CR, Johnston SC. Transforming from centers[25]

http://dx.doi.org/10.1056/NEJMoa1401811
http://www.ncbi.nlm.nih.gov/pubmed/24795142
http://dx.doi.org/10.1056/NEJMra1007755
http://www.ncbi.nlm.nih.gov/pubmed/21774712
http://dx.doi.org/10.1542/peds.2010-3520
http://www.ncbi.nlm.nih.gov/pubmed/21987701
http://dx.doi.org/10.1097/INF.0b013e31815e4122
http://www.ncbi.nlm.nih.gov/pubmed/18316994
http://dx.doi.org/10.3390/diagnostics14182059
http://dx.doi.org/10.1001/jamapediatrics.2016.1181
http://www.ncbi.nlm.nih.gov/pubmed/27455161
http://dx.doi.org/10.1038/s41591-018-0300-7
http://www.ncbi.nlm.nih.gov/pubmed/30617339
http://dx.doi.org/10.3339/jkspn.2017.21.2.136
http://dx.doi.org/10.1177/1756287218814382
http://www.ncbi.nlm.nih.gov/pubmed/31105772
http://dx.doi.org/10.1038/s41598-024-76901-0
http://www.ncbi.nlm.nih.gov/pubmed/39455869
http://dx.doi.org/10.1136/adc.88.8.688
http://www.ncbi.nlm.nih.gov/pubmed/12876164
http://dx.doi.org/10.1542/peds.2015-0409
http://www.ncbi.nlm.nih.gov/pubmed/26055855
http://dx.doi.org/10.1001/archpedi.154.4.339
http://www.ncbi.nlm.nih.gov/pubmed/10768669
http://dx.doi.org/10.1016/j.idc.2013.09.003
http://www.ncbi.nlm.nih.gov/pubmed/24484571
http://dx.doi.org/10.1542/peds.2020-012138
http://dx.doi.org/10.1007/s00431-024-05846-3
http://www.ncbi.nlm.nih.gov/pubmed/39672974
http://dx.doi.org/10.1016/j.jclinepi.2021.01.009
http://www.ncbi.nlm.nih.gov/pubmed/33775387
http://dx.doi.org/10.1136/bmj.l6927
http://dx.doi.org/10.1038/s41586-019-1390-1
http://www.ncbi.nlm.nih.gov/pubmed/31367026
http://dx.doi.org/10.1097/CCM.0000000000003123
http://www.ncbi.nlm.nih.gov/pubmed/29596073
http://dx.doi.org/10.1097/JU.0000000000000186
http://www.ncbi.nlm.nih.gov/pubmed/30810465


10   The Open Urology & Nephrology Journal, 2025, Vol. 18 Aboud et al.

of  learning  to  learning  health  systems:  The  challenge  for
academic  health  centers.  JAMA  2014;  311(11):  1109-10.
http://dx.doi.org/10.1001/jama.2014.705 PMID: 24643597
Hawkins  DM,  Basak  SC,  Mills  D.  Assessing  model  fit  by  cross-[26]
validation. J Chem Inf Comput Sci 2003; 43(2): 579-86.
http://dx.doi.org/10.1021/ci025626i PMID: 12653524
Hosmer  DW,  Lemeshow  S,  Sturdivant  RX.  Applied  logistic[27]
regression. Wiley Series in Probability and Statistics 2013.
http://dx.doi.org/10.1002/9781118548387
Shen L, An J, Wang N, Wu J, Yao J, Gao Y. Artificial intelligence[28]
and  machine  learning  applications  in  urinary  tract  infections
identification  and  prediction:  A  systematic  review  and  meta-
analysis.  World  J  Urol  2024;  42(1):  464.
http://dx.doi.org/10.1007/s00345-024-05145-4 PMID: 39088072
Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep[29]
learning with electronic health records. NPJ Digit Med 2018; 1(1):
18.

http://dx.doi.org/10.1038/s41746-018-0029-1 PMID: 31304302
Roberts Kenneth B, Downs Stephen M, Finnell S Maria E, et al.[30]
Reaffirmation  of  AAP  clinical  practice  guideline:  The  diagnosis
and  management  of  the  initial  urinary  tract  infection  in  febrile
infants and young children 2–24 months of age. Pediatrics 2016;
138(6): e20163026.
http://dx.doi.org/10.1542/peds.2016-3026
Chen  Y,  Ge  XH,  Yu  Q,  et  al.  Prediction  model  for  urinary  tract[31]
infection  in  pediatric  urological  surgery  patients.  Front  Public
Health 2022; 10: 888089.
http://dx.doi.org/10.3389/fpubh.2022.888089 PMID: 35812501
Ribeiro  MT,  Singh  S,  Guestrin  C.  "Why  should  i  trust  you?":[32]
Explaining  the  predictions  of  any  classifier.  Proceedings  of  the
22nd  ACM  SIGKDD  International  Conference  on  Knowledge
Discovery  and  Data  Mining.  New  York,  NY,  USA,  13  August
2016,pp. 1135-1144.
http://dx.doi.org/10.1145/2939672.2939778

http://dx.doi.org/10.1001/jama.2014.705
http://www.ncbi.nlm.nih.gov/pubmed/24643597
http://dx.doi.org/10.1021/ci025626i
http://www.ncbi.nlm.nih.gov/pubmed/12653524
http://dx.doi.org/10.1002/9781118548387
http://dx.doi.org/10.1007/s00345-024-05145-4
http://www.ncbi.nlm.nih.gov/pubmed/39088072
http://dx.doi.org/10.1038/s41746-018-0029-1
http://www.ncbi.nlm.nih.gov/pubmed/31304302
http://dx.doi.org/10.1542/peds.2016-3026
http://dx.doi.org/10.3389/fpubh.2022.888089
http://www.ncbi.nlm.nih.gov/pubmed/35812501
http://dx.doi.org/10.1145/2939672.2939778

	[1. INTRODUCTION]
	1. INTRODUCTION
	2. METHODOLOGY
	3. RESULTS
	4. DISCUSSION
	CONCLUSION
	AUTHORS’ CONTRIBUTIONS
	LIST OF ABBREVIATIONS
	ETHICAL STATEMENT
	CONSENT FOR PUBLICATION
	STANDARDS OF REPORTING
	AVAILABILITY OF DATA AND MATERIALS
	FUNDING
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES


